Poly(L-lysine)-grafted-poly(ethylene glycol)/poly(ethylene glycol-Biotin) and Poly(L-lysine)-grafted-poly(ethylene glycol)/poly(ethylene glycol-NTA)

Functionalized PLL-g-PEG chemicals are commonly used, in standalone form or in combination with their non-functionalized versions, to generate coatings that are suitable for specific coupling of biological entities while maintaining a low background-noise signal.

Coating description: Functionalized poly(l-lysine)-graft-poly(ethylene glycol) monomolecular coatings with sensing TAG

Substrate examples: Glass, quartz, silicon wafers, polyolefin (COC and COP), (plasma-activated) polymers, metal oxides (Ta2O5, ITO, TiO2, ZrO2)

Immobilization mechanism: Electrostatic adsorption


Key product features:

  • Enables functionalization of surfaces by specific binding of biological entities
  • Maintains low background signal thanks to the non-fouling character of the PEG background
  • Simple dip-and-rinse coating procedure is suitable for various substrates
  • Can be mixed with non-functionalized version of the polymer in order to precisely tune the surface densities of the binding groups
  • Can be combined with non-functionalized, fluorescently tagged version available (as standard product).
  • Standard functionalization: biotin, nitrilotriacetic acid (NTA)
  • Tailor-made synthesis for particular specific coupling chemistries according to our customers’ needs

Typical applications:


  • Binding of biotinylated proteins and antibodies via streptavidin coupling
  • Surface modification of single-stranded DNA
  • References:
    • Ruiz-Taylor, L. A.; Martin, T. L.; Zaugg, F. G.; Witte, K.; Indermuhle, P.; Nock, S.; Wagner, P. Monolayers of derivatized poly(L-lysine)-grafted poly(ethylene glycol) on metal oxides as a class of biomolecular interfaces. P Natl Acad Sci Usa 2001, 98 (3), 852–857 DOI: 10.1073/pnas.98.3.852.
    • Huang, N.-P.; Vörös, J.; De Paul, S. M.; Textor, M.; Spencer, N. D. Biotin-Derivatized Poly( l-lysine)- g-poly(ethylene glycol):  A Novel Polymeric Interface for Bioaffinity Sensing. Langmuir 2002, 18 (1), 220–230 DOI: 10.1021/la010913m.
    • Städler, B.; Falconnet, D.; Pfeiffer, I.; Höök, F.; Vörös, J. Micropatterning of DNA-tagged vesicles. Langmuir 2004, 20 (26), 11348–11354 DOI: 10.1021/la0482305.Städler, B.; Bally, M.; Grieshaber, D.; Vörös, J.; Brisson, A.; Grandin, H. M. Creation of a functional heterogeneous vesicle array via DNA controlled surface sorting onto a spotted microarray. Biointerphases 2006, 1 (4), 142–145 DOI: 10.1116/1.2434178.


  • Biochip functionalization
  • Binding of oligo(histidine)-tagged proteins
  • References:
    • Ogaki, R.; Foss, M. Biofunctional surface patterns retaining activity after exposure to whole blood. Langmuir 2014, 30 (23), 7014–7023 DOI: 10.1021/la5007378.
    • Zhen, G.; Falconnet, D.; Kuennemann, E.; Vörös, J.; Spencer, N. D.; Textor, M.; Zürcher, S. Nitrilotriacetic acid functionalized graft copolymers: A polymeric interface for selective and reversible binding of histidine-tagged proteins. Adv Funct Mater 2006, 16 (2), 243–251 DOI: 10.1002/adfm.200500232.